« 寿命25年、安全率1倍が前提だった「変電所等における電気設備の耐震設計指針」(JEAG5003) | トップページ | 東海第二の非常用電源配置はBWR-5の中でも最悪だった »

2017年2月15日 (水)

日本原電が一般向けには説明しない東海第二電源喪失対策先送りの過去

川澄敏雄さんが盛んにツイートしている通り、震災後の相次ぐ初期原発の廃炉によって、東海第二発電所はいつの間にか最後に残った1970年代運転開始のBWRとなってしまった。

しかも、元原発設計者の渡辺敦雄氏が指摘するように、BWR-5はMARKII格納容器を採用しており、炉心溶融時に溶け落ちた燃料が直接サプレッションプールの水に触れる可能性が高く、固有安全の面から見ると水蒸気爆発のリスクがMARKIより高いと指摘されている。

この問題の他にも浜岡3号機計画時の公開ヒアリング記録に残っているのだが、MARKIIはMARKIに比べて建屋の重心が高く、定性的には耐震性でやや劣ることが、以前から明らかになっている(故に、中部電力は炉形は新しくしてもMARKIを4号機まで採用し続けた)。

また、原発から30㎞圏内の人口が100万を超えており、シビアアクシデントが現実のものとなって以降は都市近接型の原発とみなされている。そのため、実効性のある避難計画はどれ程法制度を充実させても作成することが出来ない。にも拘わらず、茨城県知事を支える政財界は目先の利権を目当てにした再稼働に傾斜している。また、日本原子力発電(日本原電)も敦賀2号機が活断層問題で規制側からすら見放されつつある中、東海第二の再稼働の可能性を否定しないことで、手持ちの原発を残そうとしている。

以上が、東海第二原発を巡る概況だが、当ブログとしては、福島事故と一般的な原発再稼働問題に隠れて見逃されてきた、東海第二のような古いプラント固有のリスクについて、その経緯を明らかにし、日本原電と茨城県の先送り体質上、再稼働に正当性が見いだせないことを論じていきたいと考える。

今回は、東日本大震災発生以前の経緯を中心として、電源喪失リスクの中でも交流電源喪失リスクに着目し、日本原電の態度が、同業と比較しても長期に渡って消極的であったことを示す。直流電源を論じないのは、他社とさほど差が無いからだ。

簡単な復習だが、交流電源喪失を引き起こさないためには、次の供給手段のいずれかが生きていなければならない。

  1. 発電した電力を所内に供給:スクラム時や冷温停止時には使えない。
  2. 外部電源(送電線~所内開閉所)から電力を貰う:冷温停止時は通常この方法である。
  3. 非常用電源を起動する:外部電源からトラブル等で電力が貰えない時はこの方法である。更に、非常用電源は建屋に定置している場合と、震災後原発にも配備された移動電源車の2パターンに分かれる。

以前から指摘を続けている外部電源の耐震化の先送りは2に係わる問題で、今回は3に係わる非常用電源増設(原子炉を冷温停止に導ける大容量のもの)を実施しなかった件についても述べる。

【1】外部電源

【1-1】寿命25年、安全率1倍が前提だった日本電気協会の耐震設計指針

これは前の記事「寿命25年、安全率1倍が前提だった「変電所等における電気設備の耐震設計指針」(JEAG5003)」で述べた。初期原発の外部電源および一次変電所は25年以内に耐震強化の改修・更新工事を必要としていたことが分かる。東電福島第一も、日本原電東海第二も本来はその流れを受け入れるべきだった。

【1-2】1996年に開閉所の更新に言及

『東海発電所三十年の記録』という、日本原電が社員にのみ配布した分厚い記念誌がある(自治体図書館どころか原研にも寄贈されていないようだ)。既に廃炉になった東海第一とも通称される炭酸ガス炉(GCR)を対象にしたもので、PAについて、たった1ページしか割いていない。本来あるべきだった原子力本の在り方がどういうものかよく分かる。ところで、同書は、東海第二に関連する事項についても興味深い記述が存在している。

Tokai30nenkirokup0410 「東海発電所の保守管理 1.主要電源設備(2)屋外開閉所設備」『東海発電所三十年の記録』(1997年)

154kV系は元々東海発電所用で、廃炉になった後はガス開閉装置(GIS)へ更新した上で、東海第二の予備電源として活用することが計画されていた。しかし、以前の記事「原電東海第二は開閉機器更新の実施未定」でも触れたが、実際には遮断器だけが耐震性の高いガス式に更新された。

原子力関係で1点質問させていただきます。

御社では敦賀1号、東海第二など日本の原子力開発初期に建設されたプラントがあります。これらの外部電源は建設時いずれも気中開閉式(ABB)の機器を使用しておりガス開閉装置(GIS)ではなかったようです。

http://www.nsr.go.jp/archive/nisa/shingikai/800/28/001/1-3-1.pdf

一方上記旧保安院の報告ではABB系の機器は耐震性が脆弱とのことで、GISへの更新を推奨しています。

御社の原発の開閉所、また最初に接続する一次変電所にてGISへの更新は実施していますでしょうか。

【当社発電所の開閉所設備について(現在)】

■東海第二発電所
 ・154kV‐気中(ガス遮断器)
 ・275kV‐気中(空気遮断器)
  今後、ガス絶縁開閉装置に変更予定
(中略)

なお、当社は卸電気事業者のため、送電線は所有しておりません。一次変電所については他社の設備となりますので、お答えしかねます。

(2014年11月18日:日本原子力発電回答メール)

開閉設備一式(断路器、変成器、避雷器などを含む)の耐震化には遮断器のガス化だけでは十分ではなく、GISへの更新が不可欠である。

なお、開閉設備更新計画は、記念誌に合わせたリップサービスではない。同書の座談会で30周年時点の電気補修課長小栗第一郎氏は次のようにコメントしているからだ。

小栗‐運開以降の保守の考え方としては、当初は、予防保全を設備、機器の点検周期を決めて、それに従い点検を実施していた。
10年目以降20年ぐらいまでは、設備重要度を考慮し実施した。
20年目以降は、取替計画や経済性を考慮するようになり、診断技術を導入して先取りをした点検に移っていった。
(注:昭和)60年代に入って、将来のプラントの停止を考慮しかつ劣化の状況を見て、今後の点検、取替計画を策定するように移っていった。こうして現在のような考え方に近づいてきた。

座談会
東海発電所 安全安定運転 30年の歴史 「過去、現在、未来」東海発電所を語る 」『東海発電所三十年の記録』(1997年)

これまで私は、「日本原電は東日本大震災を見てから九州電力などが外部電源の耐震強化を進めていたにも関わらず、3年半以上設備更新を放置したと」理解していた。しかしどうやら、悪質なことに震災の15年前に遡って、1996年に設備更新の必要性を認識していたということが分かる。

小栗氏の言う「経済性」は、他社と異なる判断を下す決め手となったのだろう。それは、一体どういうものだったのだろうか。本書発行の2年後、JCO事故が東海村で発生し、日本原電もINESレベル4を間近で体験することになる。シビアアクシデントの恐ろしさを想起させるには十分だったと思われるが、それにもかかわらず当初の計画が縮小された。

一つの可能性としては、日本原電単体の「経済性」ではなく、子会社化を図った東電原発の「経済性」に支障したというシナリオが考えられる。東電はある時期から日本原電の株式を25%以上保有し、子会社とした。その経緯はWeb上では北村俊郎「巨大組織は何故大事故を起こすのか(10)」(2015.9.24 日本エネルギー会議)で説明されている。

【1-3】台湾第3原子力(馬鞍山)電源喪失事故(2001年3月)の教訓化

福島事故前に教訓化出来たチャンスとして良く取り上げられるのが仏ルブレイエ原発の洪水による電源喪失危機(1999年)である。ただし、この事故の教訓は想定外の浸水を防止するという観点から指摘されているのであって、外部電源の耐震性への問題提起としては、有力な内容と考えられていない。

主要4事故調の内、民間事故調はこの他の海外原発事故事例として、2001年に発生した台湾第3原子力(馬鞍山)での電源喪失事故に触れている。この問題もまた耐震性の観点から指摘されたものではないが、外部電源を含めた全交流電源の信頼性を見直すきっかけとなり、結果として耐震性の問題に影響を与えた可能性がある。

どういう事故なのか。

台湾の馬鞍山原子力発電所で起きたSBO(注:交流電源喪失)については原子力安全委員会等において議論がなされている。

このケースではまず、塩分を含んだ海からの濃霧による絶縁劣化により2回線ある外部電源がどちらも停止した。外部電源喪失後、本来の設計上は、2系統ある非常用ディーゼル発電機が起動する筈だったが、1つは分電盤の地絡(電気装置等と大地との間の絶縁が低下し、電気的接続が生じること)により、残る一つはディーゼル発電機の起動自体に失敗し、SBOに至った。しかし、直流電源は利用可能であったため、SBOに至った直後から補助給水系等によって炉心冷却が可能であったほか、同発電所では上記2系統のほかにもう一つ非常用ディーゼル発電機を2基で共有する形で用意しており、これを系統の一つに接続することで、約2時間でSBOを解消することができた。

(中略)台湾の事例から、発電機や外部電源系そのものが正常であっても、電源母線や電源盤の損傷によってSBOに至りうるということを、教訓として学んでおくべきであった。原子力安全委員会ではこの事例について検討が行われているが、委員からの指摘に、当時の保安院の説明者は「大体BWRの場合終局で少なくとも8時間ぐらい。それから、PWRの場合はある処置を前提にすれば5時間ぐらいはその状態での維持が可能でございますので、その間の外部電源の復旧。日本の場合大体送電系統の停電というのは30分ぐらいというような実績がございます。それから、先ほども申し上げましたD/Gの補修とかそういったものを考えて十分な余裕があるというふうな認識ではございます」と回答している。それ以上の議論は行われず、結果的に本格的な教訓は得られなかった。

「第3部 歴史的・構造的要因の分析 第7章 福島原発事故にかかわる原子力安全規制の課題」『福島原発事故独立検証委員会 調査・検証報告書』 2012年3月 P277-278

一部で悪名高い東大教授の岡本孝司氏も本件を取り上げたが「日本の安全性向上に反映されたか不明」とした。氏の手になる追跡調査は見つからなかった。

Jsmepesresearchats08080207ap12_3

岡本孝司(東京大学)「福島第一原子力発電所事故の教訓」日本機械学会HP 2011年11月28日

民間事故調、岡本氏とも触れていないが、日本と台湾は民間レベルで「日台原子力安全セミナー」を毎年開催してきた。芸能人や文化人を呼んだ一般向けの宣伝用ではなく、プロ相手の実務会合である。2002年(第16回)では馬鞍山事故を受けて電源喪失が主要なテーマとなった。そして、日本原電からも講演者が一名参加し、パネル討論にも登壇していた(武藤直人、当時日本原子力発電発電管理室プラント運営管理グループマネージャー(副部長))。

保安院の説明は当時のAM策(過酷事故対策のこと)で新味は無い。しかし、セミナーでは武藤氏とは別の講演者から興味深い事実が提示されていた。過去20年の間に国に報告された非常用ディーゼルトラブルを集計したところ、1回辺りの平均ダウン時間が100時間を超える発電所が3ヶ所存在し、日本の全原発の平均を取っても60時間だと言うのである(「中島知正(原子力発電技術機構)「日本における外部要因による計画外原子炉停止及び非常用ディーゼル発電機トラブルの統計分析について」)。

要するに、外部電源が喪失した状態でディーゼル発電機が一度故障すると、平均を取っても再起動に2.5日から4日かかり、BWRで標準となっていた8時間現状を維持する体制では、持たないという事を意味していた。

この事実を提示した講演者の中島氏は当時の通例に従って、外部電源が故障する確率と非常用電源が全て故障する確率を掛け算し、それが10^-7(/年)以下のため、「台湾の第3原子力発電所で発生したような事象は、日本では確率的に発生する恐れは殆ど無い」と結論した。

このような事実もAM策を検討した90年代初頭には情報としては上がっており、中島氏の論法もその繰り返しに過ぎない。ただ、少数の特定の委員会内部だけで読むレポートでは無く、日本原電の講演者を含む安全セミナーにおいて「電源喪失は無い」という神話の根拠が深いレベルで説明されたのは、ポイントだろう。

興味深いのはパネル討論で中島氏が台湾の事故のようなケースを考慮せずに確率計算したため、「非常に保守的な評価となってしまった」と反省の弁を述べていることだ。

また、パネル討論でコメンテーター役が設定されており、三菱重工の米沢隆氏が務めていた。恐らく、彼のコメントと思われるが、次のように教訓を述べている部分も注目される。

長時間(注:ここでは30分以上を指す)の電源喪失事故に関しては、日本では確率的安全評価(PSA)によって原子力発電所は送電系統の信頼性が高いため全電源喪失事故は炉心損傷リスクの主要寄与因子でないことが示されているが、長時間の全電源喪失事故対応も考慮したAM策が整備され、その中で、交流電源回復手段として隣接ユニットの非常用電源を利用してバックアップする方策(号機間電源融通)が準備されている。

台湾では、長時間の全電源喪失事故発生を想定しそのための十分なAM策と必要な設備対策がとられていた。従って、台湾の全電源喪失事故事象教訓に照らし、深層防護の観点から現状の日本のAM策の更なる改善要否について検討することが望ましいと考えられる。

台湾第3(馬鞍山)原子力発電所全電源喪失事故:原因と今後の課題

東電福島第一は「AM策の更なる改善」として2000年代に追加の電源喪失対策をしなかった。日本の原発全体を概観した先行文献でも、東電の右に倣えだったように説明されている。東日本大震災以前、日本のAM策は内的事象(機器の故障)のみを対象とし、外部事象(災害、テロ等)への対策は建設当時施された内容から進化していなかった。台湾は馬鞍山当時から内的事象も外部事象も想定し、塩害は外部事象に分類されたらしい。

【1-4】PWR各社は相次いで外部電源を更新

しかし、私は先行文献の「日本は行政指導の元、横並びで外部事象への対策を強化しなかった」という見方に異論がある。

電力各社の原発外部電源-関電美浜・原電東海第二は開閉機器更新の実施未定-」で外部電源の耐震性が低い原発の更新状況を各社に質問した。BWR各社については1997年に島根1号機でGIS更新の先進例があった後は、浜岡1・2号機が廃止された以外大きな動きは無く、台湾の事故後のGIS更新も無かった。一方、PWR各社を見ると、台湾の事故の後、外部電源を更新した社が存在する。

  • 関電高浜:福島事故前にGISに更新(2001年以降かは不明、経年からは可能性高)
  • 四電伊方:1号機、2号機ともGISに更新(2004~2005年)
  • 九電玄海:1号機、2号機ともGISに更新(2008~2009年)

三菱のGIS開発研究の初期に書かれた『電力機器の耐震設計方法に関する基礎的研究』(1971年)という大論文がある。引用はしないが同論文を読むと、国内外で発生した大地震と電力設備の被害を詳しく調べるなど、当初よりGISを実用化すれば地震対策へ大きな効果を見込めるものとして、重視していたことが分かる。そのような技術的思考が後輩技術者に受け継がれていたとすれば、台湾の事故を後押しにGISへの更新提案を行っていても不思議ではない。実際、2000年代後半に入ると日立、東芝、日新など変電機器メーカーも相次いで更新提案を強化し、それを社史や技報でPRしていった。

なお、GISの特徴として耐震性の高さの他、主要機器が密閉されているので塩害に強い点が挙げられる。一般論としては、台湾の事故を受けて提案する対策として最適だった。もっとも、東海第二の主要な外部電源である275kV回線の開閉所は耐震性の低い空気式(ABB)ながら塩害対策のため屋内収容されていたので、【1-2】で紹介した154kV回線(屋外設置)の更新の場合のみ、塩害対策上のメリットがある。

電源喪失対策は、後で議論するように非常用発電機の増設も指し手の一つとしてある。しかし、1990年代に東電福島第一で増設を実施した際は、設置変更許可申請を行っている。これを前例とすると、定置式の非常用電源の増設は表立った動きとならざるを得ず、地元の刺激を無意味なまでに恐れていたらしい電力各社にとって政治的に好ましい施策では無かったようだ。

なお、設置変更許可を要しない移動電源車の常置策は、何故か採用されなかった。私が直接当事者から聞いたところによると、1990年代にAM策を検討した時、メーカーサイドから電事連に提案はしたそうだが、葬られた経緯は不明だ。規制側(当時はエネ庁)の資料には一言も触れられてない。

このように見てくると、経年を理由にした外部電源の更新は、外的事象による電源喪失への対策として、絶妙な位置にあったのかも知れない。

だが東電と、(東電の子会社化が進んでいたらしい)日本原電は、そのような更新を先送りし続けた。

【2】非常用電源

【2-1】隣接原子炉から電源融通が不可能な東海第二

ここで、【1-1】~【1-4】で議論してきた外部電源から目を転じ、非常用電源について概観する。非常用電源は事故時対応の本命であり、初期の原発でも定置式が最低2台あり、1台トラブルを起こしても、もう1台で冷温停止まで導けるだけの容量を付与している。これがその後、何の強化も無かったのか、という疑問のある方もいるだろう。福島事故前の経緯をきちんと調べると分かる事だが、1990年代にAM策として非常用電源も強化された。

どういう内容だろうか。

一つのサイトに原子炉が複数ある場合、福島のように共倒れになってしまう危険がよく指摘される。しかし、上記セミナーからの引用にもあるように、非常用電源が各原子炉に設置されていることを利用すれば多重性と限定的な多様性を付与出来るため、隣接原子炉の非常用電源から電源を融通出来るようにするAM策が1990年代に実施された。

Nsc_senmon_shidai_gensi_kentou_gens 軽水型原子力発電所におけるアクシデントマネジメントの整備について 検討報告書資源エネルギー庁199410P12 (archive.orgで閲覧可能)

1998年に東海発電所が廃止されてから、東海第二は単独立地のプラントとなったため、「隣接ユニットの非常用電源を利用」することは出来なかった(上記資料に東海第二が挙がっているのは、94年の時点で、東海発電所の廃止が見えていたからだろう)。

Amhpcsdgtepcovideo_2 「IIIアクシデントマネジメント策」『アクシデントマネジメント』東京電力、東芝、東芝アドバンストシステム(リンク

 

福島事故前に製作された東電の所員向け教育ビデオにおける電源融通の様子。隣接プラントの無い東海第二では、このような模式図は成立しない。

このような「欠点」を持つサイトは当時北陸電志賀1号機(後に東北電東通1号機)などがあり、いずれもBWR-5であった。国はBWR-5が通常の非常用電源2台の他にHPCS(高圧注水系)専用の非常用電源を1台設置してあったことに目を付け、HCPS用非常用電源を通常の非常用電源としても利用出来るように結線することで、号機間融通策の代替措置とみなした。

しかし、この代替措置は矛盾している。福島第二や柏崎刈羽のBWR-5は隣接プラントを持っているが、自プラントにHPCS用の非常用電源も持っている。もし、代替措置で十分なのであれば、これらのプラントでもHPCS用に結線するだけで事は足り、経費は節減される。隣接プラントから電源融通のタイラインを引いてくる必要は無い。

逆に言えば、隣接機からの融通が第一とされたのは、このAM策を考案した人達の頭の中で、自プラントの外から引いてくることに、物理的な系統分離(セパレーション・クライテリア)という意義を見出していたからだろう。

2017/2/20追記。NUREG-1150で解析対象となったプラントを見ると隣接機からの電源融通はBWR-4に、HPCS用非常用電源からの融通はBWR-6に採用事例があった。当時は米国でもこういった融通策が水平展開されていなかったようで、日本側はこれらを真似てAM策に取り込んだのだろう。

そういうことだ。

単独立地プラントの場合、本来は別棟に残留熱除去系(RHR、駆動に大電力を要し、最終ヒートシンク~崩壊熱を海に逃がすこと~に不可欠な系統)を動かせる大容量非常用発電機(最低でも5000kW程度は必要)の増設が必要だった筈である。この方法は複数立地の福島第一だけが採用し、5・6号機を破局から救うことにも役立った。しかし、単独立地プラントでの採用例は皆無だった。

それでも、他の単独立地プラントは、外部電源が新しいGISなので耐震性は高い。そのため、上記セミナーの掛け算の理で考えれば、発電所全体で見た所内電源の信頼性は高くなる。しかし、東海第二はそうではなく、【1】で述べたように外部電源の信頼性も低い。

日本原子力発電との質疑」でも書いたことだが、原電に施策の根拠を問いかけると、国の規制に従った技術的説明は回答するが、どういう議論をしたかについては「社内の意思決定に関する情報等については、回答を差し控えさせていただきます。」と拒否される。日本原電は、2016年秋に地元で20回程説明会を繰り返したが、そういう会社である。

前掲の『東海発電所三十年の記録 運転管理資料編』によると、東海発電所の場合、保安運営委員会を2週間に1回程度の割で開催しており、AM策は「東海発電所アクシデントマネジメント検討結果について」(第234回、1995年8月7日)で討議された。事情は東海第二でも同様だったと思われるが、BWRの場合、資源エネルギー庁の資料は1994年に作成されているので、保安運営委員会の開催はもっと前だったのかも知れない。基本方針は日本原電本社で決めたのかも知れないが、こういった議事録の開示は必要である。

なお、配電盤、非常用電源、HPCS用非常用電源は原子炉建屋の外周に並んで配置されている。

Tokai2setsubigaiyoufig122b1f

「第1.2-2図 建屋内平面配置図(地階部分)」『東海第二発電所設備概要』1972年

日台セミナーの台湾側事故報告(日本語訳で配布)によると、非常用電源を現場に行って手動で再起動した際、スイッチギヤ室(配電盤室)で焼損した遮断器から発したものなのか、「現場は煙が充満しており操作がかなり困難であった」と記載されている。このことは、発端となるトラブルを内的事象に限定しても、火災や内部溢水を想定し?、煙に巻かれにくい隣接機からの融通を考えたAM策考案者の正しさを証明している。

したがって、日本原電はこのセミナーの後、別棟に大容量非常用電源を新設するべきだった。しかし、実際にはチャンスを全く生かしていない。

結局、別棟に新たな大容量非常用電源が設置されることとなったのは、福島事故の後であった。

【3】そして、東海第二の電源喪失対策は次々先送りされた

【1-1】~【1-4】、【2-1】と福島第一で取られた対策を踏まえて東海第二を観察すると、非常に奇妙な特徴がある。福島事故前20年ほどの日本原電は他社に比較して、東海第二での電源喪失対策に消極的なのである。

最初は、人と環境の条件は有利だった。【1-2】で見たように意欲はあり、【1-3】で見たように当事者を交えて生の知見を得る幸運に恵まれていたからである。

しかし、外部電源の更新は154kVの遮断器のガス化に留まり、【2-1】で見たように東電のような非常用電源の増設も行わなかった。

2007年の中越沖地震後に東電が免震重要棟の設置を決めると、日本原電も親会社に倣って同様の設備を建設し、小容量(500kW)のガスタービン発電機が屋上に設置されることとなった。このガスタービン発電機は震災に間に合い、仮設ケーブルを原子炉建屋に引いて補助的に運用された(「地震・津波被災を乗り越えた東海第二発電所」『エネルギーレビュー』2013年1月)。

仮設ケーブルということは、本来そう言う使い方を織り込んで設置した物ではないのだろうが、土壇場になって最小限の交流電源喪失対策が奏功したとは言える。例の津波対策同様に評価すべきことではある。しかし長期的な観察結果からは、電源喪失対策に対する日本原電の態度は、ある意味東電以上に原発を運転する事業者としての資質を疑わせる行動が散見される。

なお、日本原電はプラントの安全投資をサボる反面、PR施設東海テラパークを拠点に女性や子供への蔑視思想を根底に置いた啓蒙活動を、他社同様熱心に推進した。「げんでんスマイルフェア」や小中学生をターゲットにした「げんでんe学びクラブ」などが該当する。無駄な活動に費やす余力は持ち合わせていた。

Denkijoho200601p5051
「日本原子力発電が開催した「げんでんスマイルフェア」」『電気情報』2006年1月(冒頭リンク

一般的に日本の原発は安全とリスクのバランスに欠けているが、日本原電は追加の電源喪失対策を外部電源は20年以上、非常用電源も台湾の事故から10年近くも放置した。無能な原発推進者や司法関係者によくある思考として、結果オーライという発想があるが、このような適切な設備投資の感覚を喪失している事業者に、老朽原発の運転を任せて良いとはとても思えない。

« 寿命25年、安全率1倍が前提だった「変電所等における電気設備の耐震設計指針」(JEAG5003) | トップページ | 東海第二の非常用電源配置はBWR-5の中でも最悪だった »

東京電力福島第一原子力発電所事故」カテゴリの記事

コメント

コメントを書く

(ウェブ上には掲載しません)

トラックバック

この記事のトラックバックURL:
http://app.f.cocolog-nifty.com/t/trackback/1666926/69568380

この記事へのトラックバック一覧です: 日本原電が一般向けには説明しない東海第二電源喪失対策先送りの過去:

« 寿命25年、安全率1倍が前提だった「変電所等における電気設備の耐震設計指針」(JEAG5003) | トップページ | 東海第二の非常用電源配置はBWR-5の中でも最悪だった »

無料ブログはココログ
2017年5月
  1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31